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Promise problems

A promise problem is a computational problem where two disjoint sets of
inputs (yes inputs and no inputs) must be distinguished.

The GRAPH ISOMORPHISM problem will serve as a helpful example:

GRAPH ISOMORPHISM

Input: Two simple, undirected graphs G0 and G1.

Yes: G0 and G1 are isomorphic (G0
∼= G1).

No: G0 and G1 are not isomorphic (G0 6∼= G1).

There may be “don’t care” inputs: we do not require every input to be
either a yes or a no input.
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Some basic complexity classes

Computational complexity theory studies classes of promise problems,
often defined by resource constraints.

P The class of promise problems solvable in polynomial time
on a deterministic Turing machine.

BPP The class of promise problems solvable in polynomial time
on a bounded error probabilistic Turing machine (correct on
every input with probability at least 99/100).

PP The class of promise problems solvable in polynomial time
on an unbounded error probabilistic Turing machine (correct
on every input with probability greater than 1/2).

PSPACE The class of promise problems solvable in polynomial space
on a deterministic Turing machine.

EXP The class of promise problems solvable in exponential time
on a deterministic Turing machine.
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The class NP

A promise problem A is in the class NP if and only if there exists:

• a polynomial p (which specifies the proof length)

• a polynomial-time verification procedure V .

such that these two properties are satisfied:

1. Completeness. If a string x is a yes input, then there exists a string y
of length p(|x|) causing V to accept:

∃ y : V(x,y) = 1.

The string y is a proof (or certificate or witness) that x is a yes input.

2. Soundness. If a string x is a no input, then no string y of length p(|x|)
causes V to accept:

∀ y : V(x,y) = 0.
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Example: GRAPH ISOMORPHISM is in NP

GRAPH ISOMORPHISM

Input: Two simple, undirected graphs G0 and G1.

Yes: G0 and G1 are isomorphic (G0
∼= G1)

No: G0 and G1 are not isomorphic (G0 6∼= G1)
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The proof can be a description of an isomorphism:
1 → 3, 2 → 2, 3 → 7, 4 → 5, 5 → 1, 6 → 6, 7 → 4.
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Closure under complement?

GRAPH NON-ISOMORPHISM

Input: Two simple, undirected graphs G0 and G1.

Yes: G0 and G1 are not isomorphic (G0 6∼= G1).

No: G0 and G1 are isomorphic (G0
∼= G1).

Consider certifying that these two graphs are non-isomorphic:
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It is not known whether or not this problem is in NP. . . an efficient general
method would be required.
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The class MA

MA is defined similarly to NP, except that the verification procedure is
probabilistic. . . a promise problem A is in MA if and only if there exists:

• a polynomial p

• a polynomial-time probabilistic verification procedure V

such that similar properties to before are satisfied:

1. Completeness. If x is a yes input, then there exists a string y of length
p(|x|) such that V accepts (x,y) with probability at least 99/100.

2. Soundness. If x is a no input, then V rejects (x,y) for every string y of
length p(|x|) with probability at least 99/100.
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Diagram of classes
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BQP

A promise problem A is in BQP if there exists a family∗ of polynomial-size
quantum circuits that work like this:

|x〉

|00 · · · 0〉

(work space)

output:

1 = accept

0 = reject
Q

If x is a yes input, then

Pr[Q accepts x] > 99/100.

If x is a no input, then

Pr[Q rejects x] > 99/100.
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QMA: a quantum analogue of NP

A promise problem A is in QMA if there exists:

• a polynomial p, and

• a family of polynomial-size circuits as follows:

|x〉
(input)

|ψ〉
(quantum proof)

|00 · · · 0〉
(work space)

output (0 or 1)

Q

As for NP and MA, the polynomial p specifies the size of the proof:
|ψ〉 is a p(|x|)-qubit state.
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QMA: conditions on verification procedure

1. Completeness.

If x is a yes input, then there must exist a quantum state |ψ〉 that causes
Q to accept with high probability:

|x〉

|00 · · ·0〉

Q|ψ〉

Pr[output 1] > 99/100
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QMA: conditions on verification procedure

2. Soundness.

If x is a no input, then no choice of a quantum state |ψ〉 causes Q to
accept, except with very small probability:

|x〉

|00 · · ·0〉

Qany state ρ

Pr[output 1] 6 1/100
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Some basic facts about QMA

1. Strong error reduction.
There is nothing special about the constant 99/100 in the definition.
We can require

completeness probability: 1 − 2−q(|x|)

soundness probability: 2−q(|x|)

without changing the class.
This error reduction can be done independently of the proof length.
[MARRIOTT & W., 2004.]

2. Upper bound.
QMA ⊆ PP. [KITAEV & W., 2000; VYALYI, 2003; MARRIOTT & W., 2004]

3. Existence of an interesting complete promise problem.
The 2-LOCAL HAMILTONIAN problem is complete for QMA
[KEMPE, KITAEV & REGEV, 2004.]

(Loosely speaking: quantum analogue of the Cook-Levin Theorem.)
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Diagram of classes
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Group-theoretic problems

Let G be a finite group whose elements can be represented (uniquely) by
strings of a given length n.

Efficient computation of group operations:

Given two elements g,h ∈ G, it is assumed that the group operations can
be efficiently implemented by quantum circuits:

1. Multiplication: |g〉 |h〉 7→ |g〉 |gh〉.

2. Inverse: |g〉 7→ |g−1〉.

Abstraction:

It is sometimes helpful to view such a group as a black box group; the
group operations are performed by a black box (or group oracle), and
string representatives of elements are independent of group structure.
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Group membership

GROUP MEMBERSHIP

Input: Group elements g1, . . . ,gk and h of G.

Yes: h ∈ 〈g1, . . . ,gk〉.

No: h 6∈ 〈g1, . . . ,gk〉.

• GROUP MEMBERSHIP ∈ NP [BABAI AND SZEMERÉDY, 1984]

The proof follows from the Reachability Lemma: every element in the
subgroup 〈g1, . . . ,gk〉 has a short straight-line program that starts
with g1, . . . ,gk.

• GROUP NON-MEMBERSHIP is not known to be in NP (or in MA).
There are group oracles relative to which it is provably not the case
[BABAI, 1991; W., 2000].
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Quantum proofs for non-membership

Theorem [W., 2000]

GROUP NON-MEMBERSHIP is in QMA.

The idea behind the proof of this theorem is simple—the quantum state
that proves

h 6∈ H
def
= 〈g1, . . . ,gk〉

will be the uniform pure state over the elements of H:

|H〉 =
1

√

|H|

∑

a∈H

|a〉 .

(It is independent of the element h.)
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Quantum proofs for non-membership

Suppose that you have a copy of the state |H〉. You can use this state to
efficiently test membership of h in H as follows . . .

|0〉

|H〉 Mh

H H

Case 1: h ∈ H. We have

Mh |H〉 = |hH〉 = |H〉 ;

the controlled-multiplication has no effect. As H2 |0〉 = |0〉, so the
measurement outcome is 0 (with certainty).
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Quantum proofs for non-membership

Suppose that you have a copy of the state |H〉. You can use this state to
efficiently test membership of h in H as follows . . .

|0〉

|H〉 Mh

H H

Case 2: h 6∈ H. We have

Mh |H〉 = |hH〉 ⊥ |H〉 ;

the controlled-multiplication acts as a measurement of the first qubit.
Both before and after the second Hadamard transform, it will be totally
mixed. The measurement outcome is a uniform random bit.
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But we can’t trust the proof. . .

Suppose that |ψ〉 is the quantum state that supposedly proves h 6∈ H.
Unfortunately we cannot trust that |ψ〉 = |H〉, so we need to process |ψ〉
before running the membership test.

Imagine that instead of running the membership test with h, we run the
test with some element a ∈ H. It should reveal that a ∈ H, because it is!

If the test indicates a 6∈ H, then we know |ψ〉 6= |H〉; the proof is invalid
so reject.

Conditioned on the test indicating a ∈ H, what happens to the proof?
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Modified proof

|0〉

|ψ〉 Mh

H H (get 0)

|ψ〉 +Ma |ψ〉

Repeat for a well-chosen set of elements a1, . . . ,ak; conditioned on
success for each test, we will have a state very close to

∑

a∈H

Ma |ψ〉 (normalized).

This state is invariant under left multiplication by elements in H; if h ∈ H,
the test will falsely conclude h 6∈ H with very small probability.
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Quantum interactive proof systems

The quantum interactive proof system model works similarly to QMA,
except that an interaction occurs between the verification procedure and
a prover.

quantum
channel

Verifier

(poly-size
quantum
circuits)

Prover

(arbitrary
quantum

operations)

x x

accept/reject

The model’s classical counterpart is very important and well-studied in
complexity theory.
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Diagram of complexity classes
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Open problems

1. Place interesting problems in QMA.

• Is GRAPH NON-ISOMORPHISM in QMA?
• Is GROUP ORDER in QMA?

2. Many questions about the classes QMA, QIP(2), and QIP remain
unanswered.

• Is QIP(2) ⊆ PSPACE?
• Improve PSPACE ⊆ QIP ⊆ EXP.
• Is QIP closed under complementation?

3. There are interesting variants of these models for which little is known:

• “Multiple Merlins”. . . are two quantum proofs better than one?
• Multiprover interactive proofs. . .
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