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Promise problems

A promise problem is a computational problem where two disjoint sets of
inputs (yes inputs and no inputs) must be distinguished.

The GRAPH ISOMORPHISM problem will serve as a helpful example:

GRAPH ISOMORPHISM

Input: Two simple, undirected graphs Gy and Gj.
Yes: Go and G are isomorphic (Gy = G3).
No: Go and Gy are not isomorphic (Gg #% G1).

There may be “don’t care” inputs: we do not require every input to be
either a yes or a no input.

Quantum Proofs  (Equips 2006) 2/24



Some basic complexity classes

Computational complexity theory studies classes of promise problems,
often defined by resource constraints.

P The class of promise problems solvable in polynomial time
on a deterministic Turing machine.

BPP The class of promise problems solvable in polynomial time
on a bounded error probabilistic Turing machine (correct on
every input with probability at least 99/100).

PP The class of promise problems solvable in polynomial time
on an unbounded error probabilistic Turing machine (correct
on every input with probability greater than 1/2).

PSPACE The class of promise problems solvable in polynomial space
on a deterministic Turing machine.

EXP The class of promise problems solvable in exponential time
on a deterministic Turing machine.
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The class NP

A promise problem A is in the class NP if and only if there exists:

e a polynomial p (which specifies the proof length)
e a polynomial-time verification procedure V.

such that these two properties are satisfied:

1. Completeness. If a string x is a yes input, then there exists a string y
of length p(|x|) causing V to accept:

Jy:Vix,y) =1

The string y is a proof (or certificate or witness) that x is a yes input.

2. Soundness. If a string x is a no input, then no string y of length p(|x|)
causes V to accept:
Vy:V(x,y) =0.
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Example: GRAPH ISOMORPHISM is in NP

GRAPH ISOMORPHISM

Input: Two simple, undirected graphs Gg and G;.

Yes: Go and G are isomorphic (Gy = G1)
No: Go and Gy are not isomorphic (Gg #% G1)
29 1 » 4
37
3% ,< 2 7
153
* Ra .
G, B6 \ Gy

The proof can be a description of an isomorphism:
1 -3 22 3—7 4—5 51, 6 — 6, 7 — 4.
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Closure under complement?

GRAPH NON-ISOMORPHISM

Input: Two simple, undirected graphs Gg and Gj.
Yes: Go and G; are not isomorphic (Gg # G1).
No: Go and G are isomorphic (Gy = Gy).

Consider certifying that these two graphs are non-isomorphic:

2 2
1 3 1 3
7 4 7 4
Go 6 ° 6 5 G

It is not known whether or not this problem is in NP. .. an efficient general
method would be required.
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The class MA

MA is defined similarly to NP, except that the verification procedure is
probabilistic. . . a promise problem A is in MA if and only if there exists:

e a polynomial p
e a polynomial-time probabilistic verification procedure V

such that similar properties to before are satisfied:

1. Completeness. If x is a yes input, then there exists a string y of length
p(Ix]) such that V accepts (x,y) with probability at least 99/100.

2. Soundness. If x is a no input, then V rejects (x, y) for every string y of
length p([x|) with probability at least 99,/100.
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BQP

A promise problem A is in BQP if there exists a family* of polynomial-size

quantum circuits that work like this:

x) —

00---0) =—
(work space) —

If x is a yes input, then

Pr[Q accepts x] > 99,/100.

If x is a no input, then

Pr[Q rejects x] > 99/100.
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QMA: a quantum analogue of NP

A promise problem A is in QMA if there exists:

e a polynomial p, and
e a family of polynomial-size circuits as follows:

) — output (0 or 1)

(input) —] I
) = Q —
(quantum proof) =—H —

|00---0) — —
(work space) — —

As for NP and MA, the polynomial p specifies the size of the proof:
Ib) is a p(|x|)-qubit state.
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QMA: conditions on verification procedure

1. Completeness.

If x is a yes input, then there must exist a quantum state [\p) that causes
Q to accept with high probability:

— Prloutput 1] > 99/100
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QMA: conditions on verification procedure

2. Soundness.

If x is a no input, then no choice of a quantum state [\p) causes Q to
accept, except with very small probability:

— Prloutput 1] < 1/100

‘X> f—
any state p — Q —

‘00...0> — —
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Some basic facts about QMA

1. Strong error reduction.
There is nothing special about the constant 99/100 in the definition.
We can require

completeness probability: 1 —2—allx])
soundness probability: 2—allxl)

without changing the class.
This error reduction can be done independently of the proof length.
[MARRIOTT & W., 2004.]

2. Upper bound.
QMA C PP. [KITAEV & W., 2000; VYALYI, 2003; MARRIOTT & W., 2004]

3. Existence of an interesting complete promise problem.
The 2-LocAL HAMILTONIAN problem is complete for QMA
[KEMPE, KITAEV & REGEYV, 2004.]
(Loosely speaking: quantum analogue of the Cook-Levin Theorem.)
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Group-theoretic problems

Let G be a finite group whose elements can be represented (uniquely) by
strings of a given length n.

Efficient computation of group operations:

Given two elements g, h € G, it is assumed that the group operations can
be efficiently implemented by quantum circuits:

1. Multiplication: |g) [h) — |[g) |gh).
2. Inverse: |g) — [g71).
Abstraction:

It is sometimes helpful to view such a group as a black box group; the
group operations are performed by a black box (or group oracle), and
string representatives of elements are independent of group structure.
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Group membership

GROUP MEMBERSHIP

Input: Group elements gy, ..., gk and h of G.
Yes: he <91 ..... gk>.
No: ]’L¢<gl,...,gk>.

e GROUP MEMBERSHIP € NP [BABAI AND SZEMEREDY, 1984]
The proof follows from the Reachability Lemma: every element in the
subgroup (g1, - - -, gx) has a short straight-line program that starts
with g1,...,0x-

e GROUP NON-MEMBERSHIP is not known to be in NP (or in MA).
There are group oracles relative to which it is provably not the case
[BABAI, 1991; W., 2000].
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Quantum proofs for non-membership

Theorem [w., 2000]
GROUP NON-MEMBERSHIP is in QMA.

The idea behind the proof of this theorem is simple—the quantum state

that proves

heg HE (g1,..., k)

will be the uniform pure state over the elements of H:

M= Xl

(It is independent of the element h.)
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Quantum proofs for non-membership

Suppose that you have a copy of the state [H). You can use this state to
efficiently test membership of hin H as follows . ..

o [ ]

|H> _— Mh. —————

Case 1: h € H. We have
Mp [H) = [hH) = [H);

the controlled-multiplication has no effect. As H? |0) = |0), so the
measurement outcome is O (with certainty).
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Quantum proofs for non-membership

Suppose that you have a copy of the state [H). You can use this state to
efficiently test membership of hin H as follows . ..

o I

|H> ———— Mh —

Case 2: h ¢ H. We have
Mp [H) = [hH) L [H);

the controlled-multiplication acts as a measurement of the first qubit.
Both before and after the second Hadamard transform, it will be totally

mixed. The measurement outcome is a uniform random bit.
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But we can't trust the proof. . .

Suppose that [{p) is the quantum state that supposedly proves h ¢ H.
Unfortunately we cannot trust that [\p) = |[H), so we need to process i)
before running the membership test.

Imagine that instead of running the membership test with h, we run the
test with some element a € H. It should reveal that a € H, because it is!

If the test indicates a ¢ H, then we know [\p) # [H); the proof is invalid
SO reject.

Conditioned on the test indicating a € H, what happens to the proof?
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Modified proof

0) —{H] H (get 0)

W) Y= M —V——= W) +Mdh)

Repeat for a well-chosen set of elements ay, . . ., ay; conditioned on
success for each test, we will have a state very close to

Z Mq b))  (normalized).

acH

This state is invariant under left multiplication by elements in H; if h € H,
the test will falsely conclude h ¢ H with very small probability.
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Quantum interactive proof systems

The quantum interactive proof system model works similarly to QMA,
except that an interaction occurs between the verification procedure and
a prover.

Verifier quantum Prover
(poly-size | channel | @rpitrary
guantum guantum

circuits) operations)

accept/reject

The model’s classical counterpart is very important and well-studied in
complexity theory.
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Diagram of complexity classes

QIP = QIP(3)
IP = PSPACE
PH
AM

MA

NP
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Open problems

1. Place interesting problems in QMA.

e Is GRAPH NON-ISOMORPHISM in QMA?
e Is GRouP ORDER in QMA?

2. Many questions about the classes QMA, QIP(2), and QIP remain
unanswered.

e Is QIP(2) C PSPACE?
e Improve PSPACE C QIP C EXP.
e Is QIP closed under complementation?

3. There are interesting variants of these models for which little is known:

e “Multiple Merlins”. .. are two quantum proofs better than one?
e Multiprover interactive proofs. ..
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