
Graphs in Quantum Information Theory

David Feder, University of Calgary

1 Introduction

The fascinating properties of graphs have been studied since ancient times. Modern ‘graph theory’
originated fairly recently, with Leonhard Euler’s famous paper on the Seven Bridges of Königsberg,
published in 1736. The problem was to find a way to wander about Königsberg, crossing each bridge
exactly once. The layout of the bridges in town is given in Fig. 1.

Figure 1: The seven bridges problem, from wikipedia.

The solution of the problem will be discussed during the summer school; you can use the following
space to fill it in! But I’ll give you a hint: the problem reduces to analyzing the following graph:

Figure 2: The graph associated with the seven bridges problem.

Solution:

Graphs in Quantum Information Theory 2

By recasting the above topological problem in terms of a graph consisting of vertices and edges,
Euler laid the foundations of modern graph theory. His original paper can be found on the summer
school website. Since then, numerous physical and mathematical problems have been phrased in
terms of an underlying graph. One of the most famous problems in graph theory over the past
couple of centuries was the so-called ‘four-colour problem,’ posed by Francis Guthrie in 1852. This
asked if it is possible to colour a map using only four colours, without any two adjacent countries
sharing the same colour. Though it was intensely studied by many leading mathematicians, who
developed many important graph theoretic concepts and tools, the four-colour problem was only
solved in 1977 [1], in part using computers to perform exhaustive search.

There are many important problems in graph theory that remain to be solved. A wide class are graph
representations of combinatorial optimization problems, such as the travelling salesman problem
(finding the lowest-cost path that takes you through each vertex exactly once and brings you back
to the start) which is known to be NP-hard. An efficient algorithm for this type of problem (also
known as Hamiltonian cycle problems) would have far-reaching practical consequences, such as for
scheduling and manufacturing. Another class of problems involves finding patterns. One of the most
famous examples is the graph isomorphism problem, where one needs to determine if two different
graphs can be made the same by permuting (or relabelling) the vertices of one of them. An important
class of this type of problem is to enumerate all of the subgraphs of a given type (such as all complete
subgraphs with n vertices, where each vertex is connected to all others in the subgraph by a single
edge); many of these problems, such as the clique problem which is to determine the largest complete
subgraph, are also NP-hard. But since networks pervade our society (think of the WWW, or even
networks representing society itself!), efficient algorithms would allow us to identify and predict the
properties of highly complex systems.

In this short course, I will discuss some of the relationships between quantum information and graph
theory that have been developed over the past few years. The ultimate goal is the development of
quantum algorithms for problems in graph theory that can outperform their classical counterparts.
There are two main points of contact between these seemingly disparate fields. One of these is to
consider a graph as a collection of vertices in either real or configuration space, connected by edges.
The basics of graph theory are covered in Section 2. A major effort in this case is to construct
quantum algorithms that can efficiently determine properties of the graph, and in Section 3 I will
describe in detail one such approach which is based on quantum walks. The other point of contact is
to consider each vertex as a qudit, with edges representing an entangling operation. In this picture,
each graph is uniquely associated with a highly entangled quantum state known as a graph state or
stabilizer state. The theory of stabilizers will be introduced in Section 4 and their relationship with
quantum error correction will be discussed in Section 5. In Section 6 I will also show that certain
graph states, known as cluster states, are a resource for universal quantum computation based only
on measurements.

2 Graph Basics

One can be very formal when talking about graphs, but I prefer to make things as simple as possible.
Basically, graphs are characterized by a set of vertices V and the set of edges E that connect them.
The resulting graph is sometimes designated G(V, E). Sometimes the vertices are called ‘nodes’ and
the edges ‘links.’ The degree of a vertex equals the number of edges emanating from it. Examples of
graphs are shown in Fig. 3. (Notice that the maximum clique number is 3 for the graph on the right
in Fig. 3). If there is a link E(1, 2) between vertex 1 and 2, and also E(2, 1) between 2 and 1, and
the same is true for all the other edges E, then the graph is ‘undirected.’ If the edges go one way
but not the other, then the graph is said to be ‘directed,’ and is sometimes referred to as a digraph.
If two vertices share more than a single edge, the graph is called a ‘multigraph.’ If the weights of
all the edges (described below) are all equal, then the graph is ‘regular’; otherwise it is ‘weighted.’
That’ll do for now!!

Graphs in Quantum Information Theory 3

Figure 3: Examples of graphs. A labelled undirected regular graph is shown on the left while an
unlabelled directed regular graph is shown on the right.

The adjacency matrix A for a simple graph is a matrix whose rows and columns are labelled by the
vertices and the non-zero entries give the edges. For an undirected regular graph with no self-loops,
the matrix is symmetric and traceless, with all entries either 0 or 1. To be concrete, the adjacency
matrices for the graphs shown in Fig. 3 are given by

Aleft =

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

; Aright =

0 1 0
0 0 1
1 1 0

 .

3 Quantum Walks on Graphs

One of the most efficient classical ways to explore graphs is the random (or drunken) walk, which
underpins many important algorithms in physics and computer science, among other things. Random
walks also provide a nice description of how classical particles diffuse toward some kind of equilibrium.
Because quantum particles can become delocalized (i.e. can go many directions simultaneously),
one might expect algorithms based on a quantum version of a random walk to outperform those
based on classical random walks. Indeed, polynomial speed-ups are standard and some exponential
improvements have also been found. See Refs. [2, 3, 4, 5] for some nice introductions to quantum
walks.

3.1 Discrete-Time Random Walk on a Line

Consider a one-dimensional (1D) lattice, which is a regular unweighted graph with each vertex
connected to its neighbours on the left and right (except for the first and last vertices, of course!).
Suppose that there is a walker that at every step will randomly choose between moving right or left.
Maybe he flips a coin and moves one step to the right with probability p if it comes up heads, and
left with probability q = 1 − p otherwise. The question is: what is the probability of finding him
m steps away after N steps are taken? Put another way, if he is a very precise drunk, so that the
length of step is always exactly `, then what is his mean displacement after N steps?

We know that N = n1 + n2, where n1 and n2 are the number of steps to the right and left,
respectively. Evidently, the distance after N steps is given by the difference, m = n1 − n2. These
two equations can be inverted, n1 = 1

2 (N +m) and n2 = 1
2 (N −m), so that the probability of being

m steps away is

PN (m) =
N !

n1!n2!
pn1qn2 =

N ![
1
2 (N + m)

]
!
[
1
2 (N −m)

]
!
p

1
2 (N+m)q

1
2 (N−m).

Graphs in Quantum Information Theory 4

Let’s calculate the mean number of steps taken to the right, and the standard deviation.

n1 =
N∑

n1=0

p(n1)n1 =
N∑

n1=0

N !
n1!(N − n1)!

pn1qN−n1n1 (1)

=
N∑

n1=0

N !
n1!(N − n1)!

qN−n1 [n1p
n1]

=
N∑

n1=0

N !
n1!(N − n1)!

qN−n1

[
p

d

dp
(pn1)

]
(2)

= p
d

dp

N∑
n1=0

N !
n1!(N − n1)!

qN−n1pn1

= p
d

dp

[
(p + q)N

]
from binomial theorem

= pN(p + q)N−1 = pN. since p + q = 1.

So the mean number of steps to the right is just the total number of steps times the probability
of taking a step to the right. No surprises here! Obviously we also know that n2 = qN and so
m = N(p− q).

Now let’s calculate the RMS value (∆n1)2 = n2
1 − n1

2. Because we already know n1, we only need
to obtain n2

1. But instead of a factor of n1 appearing in the expression (1), there is now a factor of
n2

1. It would be nice to use a derivative trick like in line (2) above. Using

d

dp
(pn1) = n1p

n1−1 and
d2

dp2
(pn1) = n1(n1 − 1)pn1−2

one gets

p2 d2

dp2
(pn1) = (n2

1 − n1)pn1 ⇒ n2
1p

n1 = p2 d2

dp2
(pn1) + n1p

n1 .

So right away the result can be written down:

n2
1 = p2 d2

dp2

[
(p + q)N

]
+ pN

= p2
[
N(N − 1)(p + q)N−2

]
+ pN

= p2N(N − 1) + pN.

So
(∆n1)2 = n2

1 − n1
2 = p2N2 − p2N + pN − p2N2 = Np(1− p) = Npq.

The RMS value is therefore ∆n1 =
√

Npq. This means that after N steps, the mean displacement
of the walker from his starting point will go like

√
N . Put another way, if there are M + 1 vertices

and he starts at the center, then he will take on average (M/2)2 steps to reach either end.

3.2 Discrete-Time Quantum Walk on a Line

The discrete-time quantum walk on the line behaves much as the classical version, except that instead
of the walker choosing to move right or left at each step, she moves in both directions simultaneously,
with some probability amplitude. A simple approach is to allow the walker to carry a ‘quantum
coin,’ which can be put into a superposition of heads and tails. So the walker needs to keep track

Graphs in Quantum Information Theory 5

of both her coin coordinates, and her spatial coordinates. The coin states will be encoded in a spin
degree of freedom, with |0〉C and |1〉C representing heads and tails, respectively. On a 1D lattice
with M + 1 points, her spatial coordinate will be encoded in the vector |j〉S , 0 ≤ j ≤ M . So, the
total wavefunction can be written

|ψ〉 =
1∑

σ=0

M∑

j=0

ασj |σ〉C ⊗ |j〉S .

The quantum walk is effected by repeated application of the operator U , which consists of first ap-
plying the Flip operator F on the coin, and then shifting the walker with S in a direction conditional
on the spin state: right if |0〉C and left if |1〉C . For N steps, the resulting operator is U = [S(F⊗I)]N

where I is the M -dimensional identity operator and

F = [cos(θ)|0〉C + sin(θ)|1〉C] 〈0|C + [− sin(θ)|0〉C + cos(θ)|1〉C] 〈1|C ;

S =
∑

i

(|0〉C〈0|C ⊗ |j + 1〉S〈j|S + |1〉C〈1|C ⊗ |j − 1〉S〈j|S) ,

where θ is some angle defining the fairness of the coin, with θ = π/4 giving the balanced coin. (Note
that in 1D, a real coin operator is completely general, but this is not the case for more interesting
graphs). Because the coin operator isn’t really randomizing (the operation is perfectly unitary and
the evolution of the wavefunction is coherent), I prefer to call this a ‘quantum walk’ rather than a
‘quantum random walk.’ The analysis of this discrete-time quantum walk is a bit involved [6], so I’ll
simply show the results in Fig. 4 for the random and quantum walks after 20 timesteps. In both of
these cases, I chose a balanced coin and started the walks with full probability at the central vertex,
and for the quantum case the initial coin state was chosen to be |0〉C + i|1〉C which gives a nice
symmetric pattern.

0 10 20 30 40
vertex

0

0.05

0.1

0.15

0.2

pr
ob

ab
ili

ty

Figure 4: Comparison of the discrete-time random walk and quantum walk on a line. The solid and
dashed lines show the probability of finding the classical and quantum walkers at a given vertex,
respectively, after 20 timesteps.

It is clear that the probability distributions for the two walks are markedly different. The classical
distribution remains peaked at the origin, and the half-width at half-max is around 5 ≈ √

20 lattice
spaces. In contrast, the quantum probability distribution is strongly peaked away from the center,
and the spread is much greater. Fig. 5 compares the rms width of the resulting distributions as
a function of the number of steps. While the classical rms value spreads like the square root of
the number of steps so that ∆j ∼ √

N or alternatively ∆x ∼ √
t where x and t are position and

time respectively, the quantum value spreads linearly in the number of steps,
√
〈x2〉 ∼ t. Thus, in

Graphs in Quantum Information Theory 6

principle the quantum walk provides a quadratic speed-up in the ability to access a given vertex over
the classical random walk; that is, starting the walker from the central vertex, a quantum walk will
give a high probability of hitting the vertex at either end quadratically faster than will a random
walk.

This polynomial speed-up is a bit misleading, though. There is a classical strategy for reaching one
of the end vertices starting from the center that also scales linearly with the number of steps. It is
simply to move in only one direction! This is a cautionary note when discussing speed-ups using
quantum walks: there can be a classical algorithm that looks nothing like a random walk that can
still perform as well.

0 2 4 6 8 10 12 14 16 18 20
timestep

0

2

4

6

8

10

√〈
x2 〉

Figure 5: Comparison of the rms spread for the discrete-time random walk (solid line) and quantum
walk (dashed line).

3.3 Continuous-Time Quantum Walks

The discrete-time walks described above have continuous-time versions that share much the same
behaviour, but don’t generally require a coin degree of freedom. If γ is the probability per unit time
of hopping from a given vertex to one of its neighbours, then the time-evolution of the probabilities
for the random walk is given by the following equation:

dpj(t)
dt

= γ

M∑

k=0

Ajkpk(t).

Here, Ajk are the non-zero entries of the graph adjacency matrix, and conservation of probability
requires that ∑

j

pj(t) = 1 ∀t.

It is easy to verify by direct simulation that the distribution of probabilities with time closely follows
the behaviour shown in Fig. 4.

The continuous-time quantum walk has very much the same form. Given the wavefunction for some
quantum particle |ψ(t)〉, the Schrödinger equation is

ih̄
d

dt
|ψ(t)〉 = H|ψ(t)〉,

where H is the Hamiltonian for the system. The Hamiltonian is the generator of time translations
in classical mechanics, and is equal to the total energy operator for conservative systems (i.e. when

Graphs in Quantum Information Theory 7

closed paths in Hilbert space do no work). The amplitude to find the particle on vertex |j〉 is simply
〈j|ψ〉; inserting a complete set using the identity

∑
j |j〉〈j| ≡ 1, one then obtains

ih̄
d

dt
〈j|ψ(t)〉 =

∑

k

〈j|H|k〉〈k|ψ(t)〉. (3)

But for discrete systems, the elements of the Hamiltonian effectively constitute the adjacency matrix
of a graph, 〈j|H|k〉 ≡ −τAjk, where τ is a constant (for unweighted graphs) with the appropriate
units of energy and length (according to the spatial dimension). Defining 〈j|ψ(t)〉 ≡ ψj(t), Eq. (3)
can then be written in the following convenient form:

ih̄
dψj(t)

dt
= −τ

∑

k

Ajkψk(t). (4)

Thus, a continuous-time quantum walk on a graph is indistinguishable from ordinary Schrödinger
time-evolution under the influence of some Hamiltonian/adjacency matrix. This implies that any
efficient algorithm to simulate a Hamiltonian can be effected by a quantum walk over some graph,
and vice versa.

3.4 Example: Quantum Walk Search Algorithm

To illustrate the power of quantum walks, I’ll describe a way to implement Grover’s algorithm [7]
using quantum walks, designed to find with high probability a marked element of some unsorted
database. The analysis is somewhat simpler to describe in terms of a continuous-time quantum
walk [8, 9], though a discrete-time version is also possible [10]. It is well-known that Grover’s
algorithm gives a quadratic speed-up over a classical brute-force search, i.e. a marked item in a
database with N elements can be found quantum mechanically using only

√
N operations.

Consider the complete graph with N vertices, KN . The adjacency matrix is given by

Aij =

{
1 i 6= j

0 i = j
,

so that each vertex is connected to all others. The ground state of the associated Hamiltonian
H = −τA with τ < 0 is the uniform distribution

|ψgs〉 =
1√
N

∑

j

|j〉.

This is because other than a factor of (τ/N)I, the Hamiltonian itself is H = −Nτ |ψgs〉〈ψgs|.
Now suppose that the vertex q is marked, and we would like to evolve the initial ground-state
wavefunction under the influence of some Hamiltonian, so that |ψgs〉 → |q〉 after some time t. In
effect, we would like to turn the problem into one involving only two states, |ψgs〉 and |q〉. It turns
out that for the complete graph, one simply needs to use the following Hamiltonian

H = −τA− (τI − τI)− |q〉〈q| = −Nτ |ψgs〉〈ψgs| − |q〉〈q|+ τI.

The extra factor of τI just gives a constant shift to the energy and has no effect on the time-
dynamics except to shift the wavefunction’s phase. The solution requires inverting the Schrodinger
equation (4), so that ψj(t) = exp(−iHt)ψj(0) ≡ U(t)ψj(0), where j is some state index. But to
obtain an analystical solution for U(t) we need to expand in an orthogonal basis, and the vectors
|ψgs〉 and |q〉 are not orthogonal; rather, 〈ψgs|q〉 ≡ x = 1/

√
N for any k. To make further progress,

we first need to use an orthogonal basis; let’s define a vector |p〉 that is explicitly orthogonal to |q〉:

|p〉 =
1√

1− x2
(|ψgs〉 − x|q〉) .

Graphs in Quantum Information Theory 8

Now in (q, p) space, the Hamiltonian and initial state are respectively:

H

(−τ)
=

(
1 + x2 x

√
1− x2

x
√

1− x2 1− x2

)
; |ψ(0)〉 =

(|q(0)〉
|p(0)〉

)
=

(
x√

1− x2

)
.

A simple way to find U = e−iHt is to diagonalize H, i.e. find V such that V HV † = D where D is
the (diagonal) matrix of the eigenvalues λ of H. Then, H = V †DV and U = V †e−iDtV . It’s easy
to find that λ = 1± x and

V =
1√
2

(√
1 + x −√1− x√
1− x

√
1 + x

)
.

We quickly obtain
(|q(t)〉
|p(t)〉

)
=

(
cos(xt)− ix sin(xt) −i

√
1− x2 sin(xt)

−i
√

1− x2 sin(xt) cos(xt) + ix sin(xt)

) (|q(0)〉
|p(0)〉

)
.

=
(

x cos(xt)− i sin(xt)√
1− x2 cos(xt)

)
.

So, the probability of being in the marked state 〈q(t)|q(t)〉 = x2 cos2(xt) + sin2(xt) is exactly one
when t = π/2x = π

√
N/2, so that the search time scales like

√
N as hoped.

While similar algorithms have been devised for other kinds of graphs, the efficiency with which
the marked state can be found varies considerably. For example, quantum search algorithms for
elements on a line give no speed-up over classical methods, since sites can be found using

√
N steps,

but
√

N iterations are needed to determine if the result is correct. In fact, unless special tricks are
used, a regular lattice needs to have dimension greater than 3 for a quantum algorithm to give any
advantage over brute-force searching [9].

3.5 Example: Glued-Trees Graph

Quantum walks also have the capability to give an exponential speed-up over classical methods for
certain kinds of problems. One class of these can be phrased as the problem of finding the ‘exit’
vertex of some graph (this will be clearer below), given full initial amplitude on some ‘entrance’
vertex. Consider again the 1D lattice with M + 1 sites, with the entrance vertex the first site on
the left, and the exit the last site on the right. A quantum walk will hit the rightmost vertex in a
time t ∝ M with probability decreasing polynomially with M (more specifically, like M−1/2), while
a classical walker will hit the rightmost vertex in a time t ∝ M2.

The so-called ‘glued-trees’ graph [11], shown in Fig. 6, provides an example of an exponential sep-
aration between classical and quantum behaviour. Without randomization (left image), a classical
random walker will take a time to reach the exit vertex that grows exponentially with the graph
width, because of the exponential growth in the number of vertices. A quantum walker, in contrast,
is effectively able to take all directions simultaneously. In effect, the quantum walk on the original
graph maps onto a quantum walk on a 1D line (with a defect), which can be traversed in linear
time. That said, there are again efficient classical strategies that allow traversal of the glued-trees
graph in time that grows only polynomially with the width; the random walker accomplishes this
by checking the vertex degree at each step.

To foil this method, it suffices to randomize the connections at the graph center [12], shown on
the right of Fig. 6. An intelligent random walker will rapidly find its way toward the center of the
graph, since it has two ways to move right and only one to move left. But once there, it will get
lost in the maze of random connections and will take an exponentially increasing time to find the
way out as a function of the tree-depth. One can phrase the attempt to hit the exit vertex as an
oracle problem. Suppose you are given the label of the entrance vertex, and your task is to find the
label of the exit vertex. At each vertex, you can ask an oracle for the names of the neighbouring
vertices. Success requires an exponential number of queries using the optimal classical algorithm,

Graphs in Quantum Information Theory 9

Figure 6: The glued-trees graph without randomization (left, from Ref. [3]) and with randomization
(from Ref. [6]).

but only a polynomial number using a quantum walk. Note that this isn’t the first example of
an exponential improvement using a quantum algorithm; just about anything based on a quantum
Fourier transform, such as Shor’s factoring algorithm [13], gives this improvement.

4 Graph States and Stabilizers

Let’s switch gears, to see another way to think about quantum graphs. Instead of quantum particles
traversing edges between vertices, now the vertices themselves will correspond to qubits (generally
qudits, but I’ll restrict the story to qubits for the purposes of these notes), and the edges correspond
to entangling operations between qubits. This will turn out to be a powerful way to think about
highly entangled pure and mixed states, and will lead ultimately to a new approach to quantum
computing, based entirely on measurements of vertices in graphs. For an introduction to graph-state
theory see Ref. [14]; for stabilizer theory, I recommend Dan Gottesman’s Ph.D. thesis [15].

4.1 Graph States

To be specific, let each of the N vertices of a given graph be initialized in the |+〉 state, so that

|ψinit〉 = |+〉⊗N =
[

1√
2

(|0〉+ |1〉)
]⊗N

=
N⊗

j=1

|+〉j .

Now two-qubit controlled-phase operations, otherwise known as CZ gates, are applied between qubits
j and k, making vertex k the ‘neighbour’ of vertex i. Recall that the CZ gate is defined as

CZ ≡

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 =

∑

j,k∈{0,1}
(−1)jk|jk〉〈jk|. (5)

The simplest non-trivial graph one can construct this way has two vertices that share one edge. The
initial state is |ψ〉 = |+〉 ⊗ |+〉 ≡ |+ +〉 and after the entangling gate the result is

|ψ−〉 =
1
2

(|00〉+ |01〉+ |10〉 − |11〉) , (6)

which is shown in Fig. 7.

Graphs in Quantum Information Theory 10

Figure 7: The two-vertex graph state is generated (a) by initializing each qubit in the |+〉 state and
then operating with a CZ gate, yielding (b).

Note that if we apply a Hadamard gate to either qubits 1 or 2, the result is a Bell state:

|ψBell〉 = H1|ψ′〉 = H ⊗ I|ψ′〉 =
1√
2

(
1 1
1 −1

)
⊗

(
1 0
0 1

)
|ψ′〉 =

1√
2

(|00〉+ |11〉) = H2|ψ′〉.

Now suppose that we position three qubits in an equilateral triangle and apply a CZ to qubits 1 and
2 and also to qubits 2 and 3; in this case we obtain the ‘Λ’ graph and the state

|ψΛ〉 =
1√
8

(|000〉+ |001〉+ |010〉 − |011〉+ |100〉+ |101〉 − |110〉+ |111〉) . (7)

If we further apply a CZ between qubits 1 and 3 we obtain the graph K3 and the state

|ψ4〉 =
1√
8

(|000〉+ |001〉+ |010〉 − |011〉+ |100〉 − |101〉 − |110〉 − |111〉) . (8)

Both of these graphs are shown in Fig. 8. If we subsequently applied a Hadamard to qubits
1 and 3 of Λ, we would obtain the GHZ3 state (|000〉+ |111〉) /

√
2 which looks much simpler.

(Note that the transformation from 4 to GHZ3 is a combination of this and other ‘local com-
plementation’ operations, discussed below). Don’t be fooled into thinking that we will always
make GHZN for N qubits this way, however! For example, for four qubits the resulting state is
(|0000〉+ |0011〉+ |1100〉 − |1111〉) /2.

Figure 8: The Λ (a) and 4 (b) graphs are the only two three-vertex fully connected graphs.

In any case, if we don’t apply any Hadamards after the entangling gates, then for many qubits it
rapidly becomes tedious to explicitly write down the various graph states. Thankfully, there are two
very compact ways to express them. The first is to use the so-called ‘quadratic form’ which is based
on the graph adjacency matrix; for the graphs (7) and (8), the adjacency matrices are respectively

AΛ =

0 1 0
1 0 1
0 1 0

 ; A4 =

0 1 1
1 0 1
1 1 0

 . (9)

The corresponding states are written

|ψΛ〉 =
∑

x∈{0,1}⊗3

(−1)x1x2+x2x3 |x1x2x3〉; |ψ4〉 =
∑

x∈{0,1}⊗3

(−1)x1x2+x2x3+x1x3 |x1x2x3〉.

These expressions become obvious when comparing with the definition of the CZ operator (5). So,
in general the graph states can be represented as

|ψgraph〉 =
∑

x∈{0,1}⊗N

exp

−iπ

N∑

i=1

∑

j>i

Aijxixj

 |x〉

Graphs in Quantum Information Theory 11

But this still seems a bit unwieldy. A more illuminating approach is to use the stabilizer formalism,
discussed in the next section.

4.2 Stabilizers

A stabilizer of a state |ψ〉 is a fancy word for a set of operators, all of which have |ψ〉 as an eigenvector
with eigenvalue +1. For example, the state |+〉 is the eigenvector of both the X and I operators
with eigenvalue +1, so the group {X, I} is the stabilizer for |+〉. Likewise, the stabilizer for the
product state |+ +〉 is S = {X ⊗X, X ⊗ I, I ⊗X, I ⊗ I} ≡ {XX, XI, IX, II}. Before I get too far
I should pause to remind you what the Pauli matrices are:

X =
(

0 1
1 0

)
; Y =

(
0 −i
i 0

)
; Z =

(
1 0
0 −1

)
.

Any single-qubit unitary can be constructed from a linear combination of these X, Y , and Z, but
the eigenvectors of these latter Pauli matrices are different from |+〉. This means that only X and
I stabilize |+〉; likewise, an arbitrary single-qubit state |ϕ〉 = U |+〉 also has only two elements in its
stabilizer, which are I and UXU†.

Things get more interesting when the states are entangled. Consider again the two-qubit graph state
|ψ−〉. We know that

|ψ−〉 = CZ|+ +〉 = CZ(XX)|+ +〉 = CZ(XI)|+ +〉 = CZ(IX)|+ +〉 = CZ(II)|+ +〉,

so to obtain the stabilizer for |ψ−〉 it is nice to know that CZ(XX) = (Y Y)CZ, CZ(XI) =
(XZ)CZ, and CZ(IX) = (ZX)CZ. So immediately we obtain the stabilizer for |ψ−〉 as S− =
{XZ, ZX, Y Y, II}, a result that can be easily checked by multiplying any of these operators on the
ket. More concisely, if we know that some N -qubit unitary U (which may be separable or not) trans-
forms the state |ψ〉 with stabilizer S into the state |ψ′〉 with stabilizer S′, then S′ = USU†. For exam-
ple, because |ψBell〉 is obtained by applying a Hadamard on (say) the first qubit, the stabilizer for this
state is transformed by (HI){XZ, ZX, Y Y, II}(HI)† yielding the set SBell = {ZZ, XX,−Y Y, II}.
Though I haven’t bothered to prove it formally, it should be evident that any N -qubit pure state
has a stabilizer containing 2N commuting elements. The advantage of this formalism is that, while
the stabilizer is often not unique (there can be many different choices for U that yield the same
final state), each 2N -element stabilizer nevertheless uniquely defines the N -qubit state. In general,
however, the stabilizer elements will not be separable (i.e. written as a tensor product of single-qubit
unitaries). An obvious disadvantage is that enumerating these is at least as tedious as writing down
the original state, which generally has 2N different coefficients. For the two-qubit examples above,
however, you may have noticed that two of the elements in each stabilizer (one of which is the
identity matrix) can be derived from the other two elements by multiplication. In fact, one can
treat the stabilizer as a group, whose elements can be generated by a subset of elements called the
generators. For N qubits, exactly N generators (not including the identity) are required to produce
all 2N elements.

For the two-qubit graph state |ψ−〉 defined in (6), we could choose the generators to be G− =
{XZ, ZX}. Likewise for the graph states |ψΛ〉 defined in (7) and |ψ4〉 defined in (8) we could choose
GΛ = {XZI, ZXZ, IZX} and G4 = {XZZ, ZXZ,ZZX}, respectively. These follow directly
from the ways that the (mutually commuting) CZ operators transform the original X stabilizers.
Comparison of these with the adjacency matrices given in (9) leads to an immediate connection
between the adjacency matrix of a graph and its stabilizer generators. Here is the rule:

• Replace all the diagonal elements of the adjacency matrix A with an X.

• Replace each element in A with value 1 by a Z.

• Replace each off-diagonal element in A with value 0 by an I.

Graphs in Quantum Information Theory 12

When you are done, each row of the adjacency matrix looks like a stabilizer generator. To be concise,
the elements Mj of the generator G = {Mj |j = 1, . . . , N} are all in the form

Mj = Xj

⊗

k=N (j)

Zk,

where N (j) denotes ‘the neighbourhood/neighbours of vertex j.’

4.3 Local Complementation

One of the many useful decomposable (i.e. lots-o-single-qubit or multi-local or separable) unitary
operations on quantum graphs such as those described above is local complementation (LC). In
mathematical terms, LC about the vertex j about is accomplished by the transformation

LCj =
√

Xj

⊗

k=N (j)

√
Zk

√
Z =

(
1 0
0 ±i

)
;

√
X =

√
i

2

(−i 1
1 −i

)
.

Evidently, (LCj)2|ψ〉 = |ψ〉, so that two successive LC’s bring the graph state back to itself. The
sudden appearance of square-roots of Pauli matrices might seem odd, but in fact these are two
operators that belong to the local Clifford group, which is a set of single-qubit operators that maps
the set of Pauli matrices to itself. In particular, they give rise to the following useful identities:

√
ZX(

√
Z)† = Y ;

√
ZY (

√
Z)† = −X;

√
XY (

√
X)† = −Z;

√
XZ(

√
X)† = Y.

Let’s apply local complementation on qubit 2 of the Λ graph to illustrate what happens to the
stabilizer:

√
Z
√

X
√

Z{XZI,ZXZ, IZX, Y Y Z, XIX, ZY Y,−Y XY, III}
(√

Z
√

X
√

Z
)†

= {Y Y I, ZXZ, IY Y, XZZ, Y IY, ZZX,−XXX, III}
= {XZZ,ZXZ, ZZX, Y Y I, Y IY, IY Y,−XXX, III},

where the second line is the result of the transformation, and the third line is the stabilizer of the
4 graph. Apparently miraculously, a series of completely local operations has transformed a graph
with two edges into a graph with three, as if we had explicitly applied another CZ gate between
qubits 2 and 3!

In graph theory, this particular multi-local unitary LCj corresponds to complementing the neighbour-
hood of vertex j. Here’s the recipe that doesn’t require any math. First, determine the neighbours
of vertex j, i.e. the set of all vertices connected to j by an edge, denoted {N (j)}. Second, if an edge
already connects two vertices in {N (j)}, remove it; if no edge connects them, then add it. In the
example above, N (2) = {1, 3}, but qubits 1 and 3 have no edge between them, so we add it to make
the 4 graph. Because local unitary operations cannot change the entanglement of a given state, the
LC operation implies that complicated graph states can potentially be derived from a small number
of entangling operations. Conversely, there is a minimum number of entangling operations needed
to create any given graph state; unfortunately, for general graphs this number is not necessarily easy
to compute.

It turns out that for N -qubits there are a number of fully connected graphs (i.e. no vertices without
a neighbour, and the graph is not separable into disconnected subgraphs) that cannot be mapped
to one another through the local complementation. It is an open question if there exists some other
LU outside of the Clifford group that is able to effect the transformation. For N = 3, there are 4
distinct fully connected graphs, namely Λ and rotations of this by 2π/3 and 4π/3, and 4. Clearly,
LC can connect all of these. For N = 4 there are a total of 38 distinct fully connected graphs (by
my count anyhow!). Of these, I obtain 4 classes of graphs that are not convertible by LC. What are
they?

Graphs in Quantum Information Theory 13

Solution:

If I allow qubit positions to be swapped, i.e. where I interchange the roles of qubits j and k through
the SWAP gate

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

then I can group together graphs that are isomorphic to one another. How many classes of 4-qubit
graphs remain non-convertible under the combined operations of SWAP and LC?

Solution:

Things rapidly get worse than this as N increases.

One of the key advantages of graph states is that they allow the effects of complicated manipulations
on quantum states to be directly visualized. For example, suppose that Alice and Bob each hold
one qubit, but wanted these to be entangled with each other. Unfortunately, they are too far away
to directly entangle their qubits. One way to accomplish this is for Charlie to create a two-qubit
graph state, and then for him to lend one of these qubits to Alice and the other to Bob. We could
stop there, because now Alice and Bob share entanglement, but suppose that Charlie insists that
his original qubits come back (this is getting a bit artificial, I know!). Now, Alice can entangle her
two qubits with a CZ, and Bob can do the same with his two qubits. The result is the first graph
depicted in Fig. 9. Once this is done, a series of LC operations will transform the initial graph into
the final one shown in this figure. Now Alice and Bob can each disentangle the qubits they borrowed
from Charlie by again operating with CZ’s, and send them back. Voila!

Figure 9: Entanglement transfer by local complementation. The vertex labels shown for the first
graph are the same for all others; A stands for Alice, B for Bob, and C1 and C2 are the two qubits
donated by Charlie.

Graphs in Quantum Information Theory 14

Even more interesting are scenarios where the various parties are also allowed to make measurements
(projective or otherwise); in fact, such non-unitary operations are central to a way to perform
universal quantum algorithms using graph states, to be discussed in Section 6. But first, let’s
discuss quantum error correction using stabilizers.

5 Quantum Error Correcting Codes

One of the many powerful applications of graph or stabilizer states is quantum error correction. For
a nice discussion, see Refs. [15] and [16]. Consider a noisy channel through which one wanted to
send a single qubit. Suppose that with some probability, this noise would tend to cause a bit flip,
i.e. turning |0〉 into |1〉 and vice versa, or |ψ〉 → X|ψ〉. How can we diagnose if a bit flip occurred,
and fix it? Unfortunately, we can’t just measure the qubit, because doing so destroys the state.

A simple approach is to entangle the qubit of interest (qubit 1) in the state |ψ〉 = a|0〉+b|1〉 with two
ancillary qubits, labelled qubits 2 and 3. If the ancillae are both initialized in |0〉, then performing
a CNOT gate

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

between qubits 1 and 2, and another between 1 and 3, yields the encoded state |ψ′〉 = a|000〉+b|111〉.
Now, if a single bit is flipped, the state will be transformed into one of a|100〉+b|011〉, a|010〉+b|101〉,
or a|001〉 + b|110〉. Which of these three errors occurred (if any) can be checked using a syndrome
measurement, without destroying the initial state. In this example, the syndrome measurement
corresponds to the projective measurements ZZI and IZZ. To see how it works, let’s write out ZZ
explicitly:

ZZ = Z ⊗ Z = (|0〉〈0| − |1〉〈1|)⊗ (|0〉〈0| − |1〉〈1|)
= |00〉〈00| − |01〉〈01| − |10〉〈10|+ |11〉〈11|
= (|00〉〈00|+ |11〉〈11|)− (|01〉〈01|+ |10〉〈10|) . (10)

Thus, a measurement of ZZI (accomplished mathematically by the taking the expectation value
〈ψ′|ZZI|ψ′〉) will give +1 if qubits 1 and 2 are the same, corresponding to the left parenthesis of
Eq. (10), and −1 if they are different (right parenthesis); likewise IZZ for qubits 2 and 3. After
taking both measurements, correcting the error is simply a matter of flipping the appropriate bit.

How does this example relate to stabilizers? The generators for the state |ψ′〉 = a|000〉 + b|111〉
are G|ψ′〉 = {ZZI, IZZ, ZIZ}. If an XII error occurs, the generators are transformed into G′|ψ′〉 =
{−ZZI, IZZ,−ZIZ}; likewise, errors IXI and IIX yield G′|ψ′〉 = {−ZZI,−IZZ,ZIZ} and G′|ψ′〉 =
{ZZI,−IZZ,−ZIZ}, respectively. Thus, measuring only two of the three stabilizer generators un-
ambiguously yields the error syndrome, because 〈ψ′|Mj |ψ′〉 = ±1 depending on the nature (or
absence) of the error.

You might still be puzzled about how we perform the projective measurement without destroying the
initial state. In practice, only the ancillae are actually measured to diagnose the error syndrome,
so let’s look at how things work more closely. The stabilizer for the initial state |ψ〉 ⊗ |00〉 is
{IIZ, IZI, IZZ, III} where an I remains in position 1 because |ψ〉 is unknown. The two CNOTs
convert each of these to the stabilizer {IZZ, ZZI, ZIZ, III}. If there is an X error on qubit 1, this
introduces −1 prefactors to the second and third elements, so after removing the entanglement with
the ancillae the original stabilizer becomes {IIZ,−IZI,−IZZ, III}. Thus the stabilizer for the two
ancillae is {IZ,−ZI,−ZZ, II} which defines the state |10〉. For X errors on qubits 2 and 3, their
state becomes |11〉 and |01〉, respectively, and for no error it remains in |00〉. So, computational-
basis measurements of the two ancillae yield four bits of information, revealing the error syndrome
without having to measure the qubit of interest.

Graphs in Quantum Information Theory 15

In general, quantum states can suffer from an error that takes the form of a general single-qubit
unitary U . Because we can write U as a linear combination of I, X, Y , and Z, a generic error can
be thought of as some combination of bit flips (X), phase flips (Z), or both (Y). To correct phase
flips requires a trivial modification of the protocol above. Since the errors are now Z’s rather X’s,
we simply need to construct the state with stabilizer generators G = {XXI, IXX, XIX} instead.
But this is simply a transformation of each qubit from the Z (computational) basis to the X basis,
which is accomplished by application of Hadamards.

So, to protect against an arbitrary error, one needs at most 9 qubits: 3 qubits standing for one to
protect against phase-flip errors, and each of these made three-fold degenerate to protect against
bit-flip errors. The result is the Shor code, which is an example of concatenation. The ‘codewords’
are:

|0〉 → 1√
2

(|000〉+ |111〉) (|000〉+ |111〉) (|000〉+ |111〉) ;

|1〉 → 1√
2

(|000〉 − |111〉) (|000〉 − |111〉) (|000〉 − |111〉) .

Now, recall that any N -qubit pure state can be uniquely defined by a stabilizer with N generators
and 2N elements. But for the Shor code, we would like to define two states/codewords that share
the same stabilizer. It turns out that for N qubits, a stabilizer with N − k generators will stabilize
2k orthogonal states, so the Shor code requires 8 generators. These turn out to be:

GShor = {ZZIIIIIII, IZZIIIIII, IIIZZIIII, IIIIZZIII, IIIIIIZZI, IIIIIIIZZ,

XXXXXXIII, IIIXXXXXX}.

You should convince yourself that this code indeed stabilizes the two Shor codewords, and further-
more that transforming the stabilizer by any single Pauli matrix changes the eigenvalue of at least
one of the elements to −1.

What is the smallest number of qubits required to diagnose and fix arbitrary errors? Each qubit
can suffer from three kinds of Pauli errors, so the total number of syndromes is 3N +1 including the
identity. Measurements of the N−1 ancillae give 2N−1 possible outputs, so we require 2N−1 ≥ 3N+1.
The equality is first satisfied for N = 5, corresponding to the Steane code. The stabilizer generator
is

GSteane = {XZZXI, ZZXIX,ZXIXZ, XIXZZ} ≡ {M1,M2,M3,M4}.
Together with the logical X ≡ M5 = XXXXX operator, which commutes with the generators, we
obtain a unique state that must be LC-equivalent to a graph state. Indeed, the generators

G′Steane = {M5M2M3,M2M1M5,M4M5M2M3,M1M5M2M3,M4M3M5}
= {XZIIZ,ZXZII, IZXZI, IIZXZ, ZIIZX}

define the pentagon graph! Simply removing one of the generators from the above list define two
codewords that can encode the |0〉 and |1〉 computational states. It is straightforward to verify that
this code is robust against arbitrary errors, but apart from its obvious symmetry it is a bit mysterious
why this particular 5-vertex graph has this useful property. Why not K5, for example? To get a
better understanding, it is important to explore more deeply the process of making measurements
on vertices in a graph.

6 One-Way Quantum Computing

Two approaches to universal quantum computation, based entirely on measurements, were developed
more or less simultaneously about five years ago [17, 18]. The first of these is commonly referred to
as Linear Optical Quantum Computation, or KLM after the first initials of the three authors. The
second is called one-way quantum computation and cluster-state quantum computation, the former
because of the irreversibility of the measurement process, and the latter because the fundamental

Graphs in Quantum Information Theory 16

resource used is a highly entangled ‘cluster’ of states. I will focus on the one-way model for lack of
time (and expertise!). For a recent review of this, see Ref. [19].

Consider again the two-qubit graph state, Fig. 7. Suppose now that qubit 1 is rotated into the state
|ψ1〉 = |ψin〉 = a|0〉 + b|1〉, so that the two-qubit state becomes a|00〉 + a|01〉 + b|10〉 − b|11〉. If we
now measure qubit 1 in the ξ-basis, defined by orthonormal eigenvectors in the XY plane

|ξ±〉 =
1√
2

(|0〉 ± e−iξ|1〉) ,

then the resulting state |ψout〉 on qubit 2 becomes

|ψout〉 = XmHRz(ξ)|ψin〉
up to an overall phase. Here,

Rz(ξ) =
(

e−iξ/2 0
0 eiξ/2

)

is the Z-rotation operator and m ∈ {0, 1} is the measurement result. The cluster-state representation
and circuit diagram for this teleportation protocol are shown in Fig. 10. The presence of the X for
outcome m = 1 is known as a byproduct operator. This is perhaps the simplest way of implementing
quantum teleportation; if Alice and Bob hold qubits 1 and 2, respectively, and Alice measures her
qubit, then Bob can recover |ψin〉 by applying an appropriate unitary to his qubit if Alice tells him
her measurement angle and result. A computational (Z-basis) measurement, in contrast, completely
destroys the information, yielding Zm|+〉 on qubit 2.

ξ

1

WVUTPQRS

2

WVUTPQRS |ψin〉1 • HRZ(ξ) FE
°°° |m〉

|+〉2 • XmHRZ(ξ) |ψin〉2
Figure 10: The one-bit teleportation protocol with the graph-state representation (left) and the
equivalent quantum circuit (right).

If the initial graph were a linear chain of qubits, then the ξ-basis measurement would teleport the
state of qubit 1 and the attendant operators to qubit 2, leaving all other qubits unchanged; one could
then repeat the measurement with a different choice of angle ξ2, and so on. After three teleportations
the result is

|ψout〉 = Xm3HRz(ξ3)Xm2HRz(ξ2)Xm1HRz(ξ1)|ψin〉
= Xm3Zm2HRz [(−1)m2ξ3] Zm1HRz [(−1)m1ξ2] HRz(ξ1)|ψin〉
= Xm3Zm2Xm1HRz [(−1)m2ξ3]Rx [(−1)m1ξ2] Rz(ξ1)|ψin〉,

where I have made use of the identities Rz(ξ)X = XRz(−ξ), HX = ZH, ZRz(ξ) = Rz(ξ)Z, and
HRz(ξ)H = Rx(ξ). The three angles ξ1, ξ2, and ξ3 serve as Euler angles, able to rotate a vector on
the Bloch sphere in an arbitrary direction and therefore able to simulate an arbitrary single-qubit
unitary. Note that the presence of byproduct operators means that the angles have to be adjusted
during the computation to effect the desired unitary!

To summarize the results above, a linear chain of qubits is the real-space analog of a single wire of a
quantum circuit, except that time on the horizontal axis is replaced by space. Each computational
qubit is mapped to a string of physical qubits, and single-qubit unitaries are replaced by concatenated
teleportations. The non-unitary evolution of the total quantum graph because of measurements
distinguishes one-way quantum computation from most other methods that are quantum circuit-
equivalent.

Of course, computational universality also requires two-computational-qubit gates. To build this in
we need the other crucial graph, which is Λ with the apical vertex initialized in |ψin〉 = a|0〉+ b|1〉.

Graphs in Quantum Information Theory 17

A bit of algebra reveals that measuring the apical vertex yields the state

|ψout〉 = [XmHRz(ξ)⊗ I]CZ|ψin〉 ⊗ |+〉 = [I ⊗XmHRz(ξ)] CZ|+〉 ⊗ |ψin〉.

In graph language, measuring the apical vertex in the ξ-basis produces a two-qubit graph where the
unitary transformed input state can be chosen to be on either vertex. This leads to the following
useful fact. If there are two parallel linear graphs each representing a different computational qubit
that are connected by a single vertical link, then this link would act like a (U1⊗U2)CZ|ψ1〉|ψ2〉. This
process is depicted in Fig. 11. We have therefore obtained a two-qubit gate that yields computational
universality when used together with single-qubit rotations.

Figure 11: The graph showing how to implement a two-qubit gate in the one-way model.

In contrast, a computational-basis measurement of the apical vertex of Λ completely breaks the links
to the other two vertices and all information is lost. The same result holds for a vertex of arbitrarily
high degree. For example, K5 is LC equivalent to the ‘star graph,’ where one qubit has degree 5
and the others degree 1. This in turn is LU-equivalent to GHZ5. So it should come as no surprise
that a computational measurement of any vertex should completely disentangle the state: by LC,
any of the vertices can be made to be the sole degree-5 vertex. This simple observation might begin
to reveal why the Steane graph is so special: because all the vertices have small degree 2, it is a
stabilizer state that is perhaps the least susceptible to errors caused by inadvertent measurements.

Now that we have all the tools for universal computation, it is time to introduce the cluster state,
shown in Fig. 12. The cluster state is initially prepared as a 2D square graph-state, where all qubits
except for those on the edges are degree four. Once this has been prepared, an algorithm-specific
cluster state can be prepared by selectively removing qubits from the graph via Z-measurements,
as shown in Fig. 13. At this point, the cluster state looks much like a real-space representation of a
quantum circuit, with each horizontal chain designating the computational qubits, and each vertical
link effecting a CZ gate.

?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:;

?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:;

?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:;

?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:;

?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:;

Figure 12: The initial cluster state.

Graphs in Quantum Information Theory 18

|ψ1〉 ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:;

Z?>=<89:; Z?>=<89:; ?>=<89:; Z?>=<89:; Z?>=<89:; Z?>=<89:; Z?>=<89:; Z?>=<89:; Z?>=<89:; ?>=<89:; Z?>=<89:; Z?>=<89:;

|ψ2〉 ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:;

Z?>=<89:; Z?>=<89:; Z?>=<89:; Z?>=<89:; Z?>=<89:; Z?>=<89:; ?>=<89:; Z?>=<89:; Z?>=<89:; Z?>=<89:; Z?>=<89:; Z?>=<89:;

|ψ3〉 ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:;

Figure 13: The computation-specific cluster state.

The cluster-state model has several advantages over the traditional unitary-based circuit model.
First and foremost, all of the entangling gates are done in a single step before any computation. In
many physical systems, two-qubit interactions are difficult to perform on specific qubits during the
computation without great effort, and in the one-way model this problem is eliminated. Furthermore,
in these same systems it is relatively straightforward to entangle all of the qubits simultaneously.
Second, all of the gates contained in the Clifford group can be done in advance, since they do
not teleport gates or yield byproduct unitaries. Third, for systems where physical qubits are not
long-lived (such as photons), one need only manufacture small parts of the cluster that are directly
involved in the next teleportation; and if a given entangling operation to make new cluster sections
fails, one can repeat the process until success without affecting the algorithm.

There are several notable disadvantages to this model as well. First, if the initial cluster is not
perfectly formed (say the entanglement introduces random or systematic errors), errors quickly
propagate after several teleportations, severely reducing output fidelity. Second, standard fault-
tolerant approaches are tricky to implement unless the cluster geometry is greatly modified. Third,
the square geometry may not be ideally suited for certain important multiqubit operations, such as
the three-qubit Fredkin and Toffoli gates, and the multi-qubit quantum fanout gate.

Acknowledgments

I am grateful to Mike Garrett for his help with the figures and proofreading these lecture notes.
Thanks also to Nathan Babcock for his insightful comments on error correcting codes.

References

[1] K. Appel, W. Haken, and J. Koch, J. Math 21, 439 (1977).

[2] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, quant-ph/0012090.

[3] J. Kempe, quant-ph/0303081.

[4] A. Ambainis, quant-ph/0403120.

[5] V. Kendon, quant-ph/0606016.

[6] B. Tregenna, W. Flanagan, R. Maile, and V. Kendon, New J. Phys. 5, 83 (2003).

[7] L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).

[8] E. Farhi and S. Gutmann, Phys. Rev. A 57, 2403 (1998).

Graphs in Quantum Information Theory 19

[9] A. M. Childs and J. Goldstone, Phys. Rev. A 70, 022314 (2004).

[10] N. Shenvi, J. Kempe, and K. Birgitta Whaley, Phys. Rev. A 67, 052307 (2003).

[11] A. M. Childs, E. Farhi, and S. Gutmann, quant-ph/0103020.

[12] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, quant-
ph/0209131.

[13] P. W. Shor, quant-ph/9508027.

[14] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. van den Nest, and H. J. Briegel, quant-
ph/0602096.

[15] D. Gottesman, quant-ph/9705052.

[16] D. Gottesman, quant-ph/0004072.

[17] E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).

[18] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).

[19] D. E. Browne and H. J. Briegel, quant-ph/0603226.

